Completing the Square 1

www.mathsprint.co.uk

1: Solve the following:

- a) Write $x^2 + 4x$ in the form $(x + p)^2 + q$.
- b) Write $x^2 + 8x + 24$ in the form $(x + p)^2 + q$.
- c) Write $x^2 2x + 8$ in the form $(x + p)^2 + q$.

2: Solve the following:

- a) Write $x^2 8x + 20$ in the form $(x + p)^2 + q$ and hence find the line of symmetry.
- b) Write $x^2 + 10x + 35$ in the form $(x + p)^2 + q$ and hence find the line of symmetry.
- c) Write $x^2 + 6x + 1$ in the form $(x + p)^2 + q$ and hence find the line of symmetry.

3: Solve the following:

a) Write $x^2 + 2x - 8$ in the form $(x + p)^2 + q$ and hence find the minimum value.

b) Write $x^2 - 4x + 13$ in the form $(x + p)^2 + q$ and hence find the minimum value.

c) Write $x^2 - 10x + 23$ in the form $(x + p)^2 + q$ and hence find the minimum value.

4: Solve the following:

a) Write $x^2 - 6x + 14$ in the form $(x + p)^2 + q$ and hence find co-ordinates of the vertex.

b) Write $x^2 + 4x + 6$ in the form $(x + p)^2 + q$ and hence find co-ordinates of the vertex.

c) Write $x^2 - 2x - 2$ in the form $(x + p)^2 + q$ and hence find co-ordinates of the vertex.

Answers: Completing the Square 1

www.mathsprint.co.uk

1: a)
$$x^2 + 4x = (x+2)^2 - 4$$

b)
$$x^2 + 8x + 24 = (x + 4)^2 + 8$$

c)
$$x^2 - 2x + 8 = (x - 1)^2 + 7$$

2: a)
$$x^2 - 8x + 20 = (x - 4)^2 + 4$$
 : line of symmetry is $x = 4$.

b)
$$x^2 + 10x + 35 = (x + 5)^2 + 10$$
 : line of symmetry is $x = -5$.

c)
$$x^2 + 6x + 1 = (x + 3)^2 - 8$$
 : line of symmetry is $x = -3$.

3: a)
$$x^2 + 2x - 8 = (x + 1)^2 - 9$$
 : minimum value is $x = -9$.

b)
$$x^2 - 4x + 13 = (x - 2)^2 + 9$$
 : minimum value is $x = 9$.

c)
$$x^2 - 10x + 23 = (x - 5)^2 - 2$$
 : minimum value is $x = -2$.

4: a)
$$x^2 - 6x + 14 = (x - 3)^2 + 5$$
 : vertex is (3, 5).

b)
$$x^2 + 4x + 6 = (x + 2)^2 + 2$$
 : vertex is (-2, 2).

c)
$$x^2 - 2x - 2 = (x - 1)^2 - 3$$
 : vertex is $(1, -3)$.