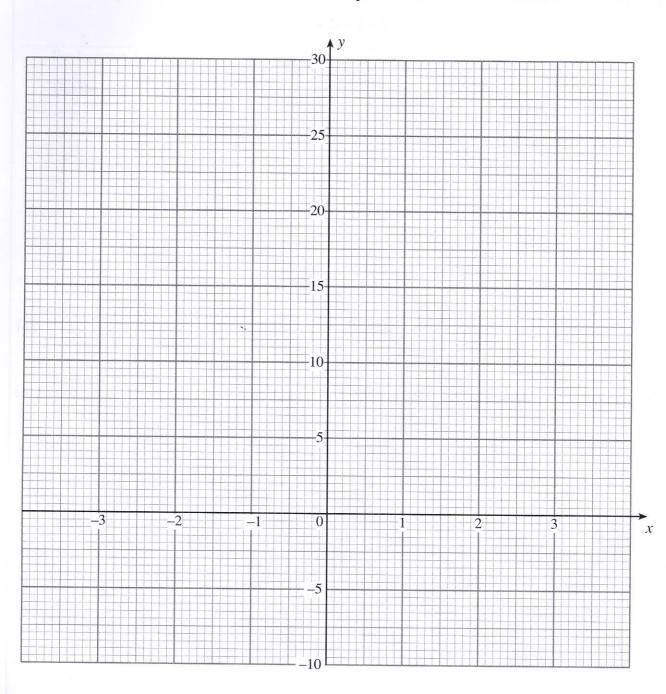
- The table shows some of the values of $y = 3x^2 + x 5$ for values of x from -3 to 3.
 - Complete the table by finding the value of y for x = -2.

х	-3	-2	-1	0	1	<u> </u>	3
$y = 3x^2 + x - 5$	19		-3	-5	-1	9	25

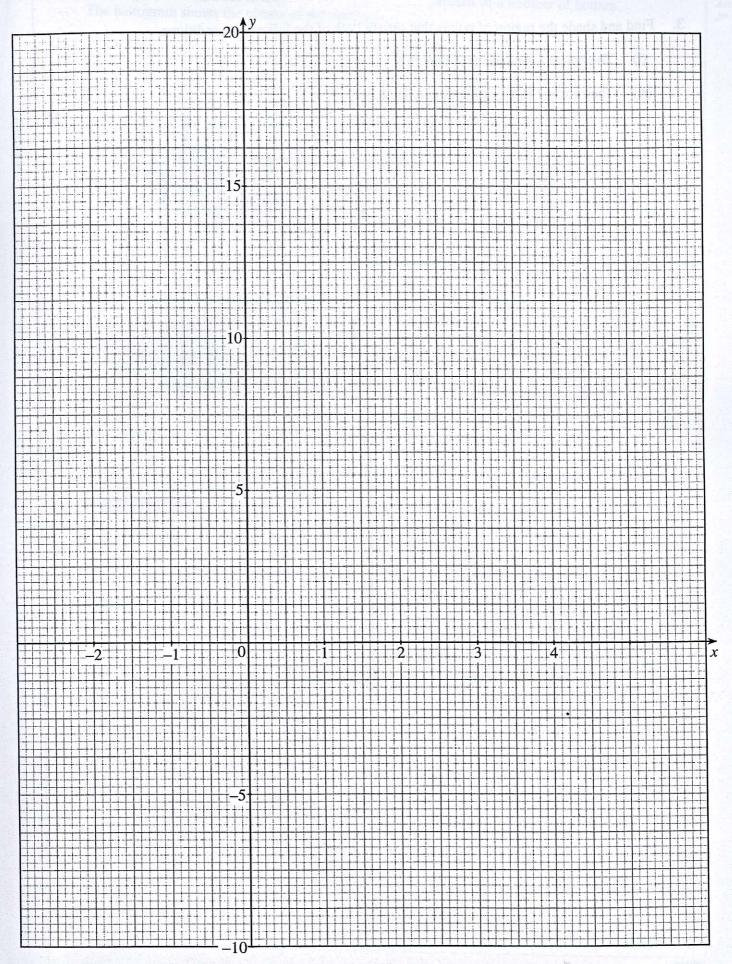


On the graph paper opposite, draw the graph of $y = 3x^2 + x - 5$ for values of x between -3 and 3.

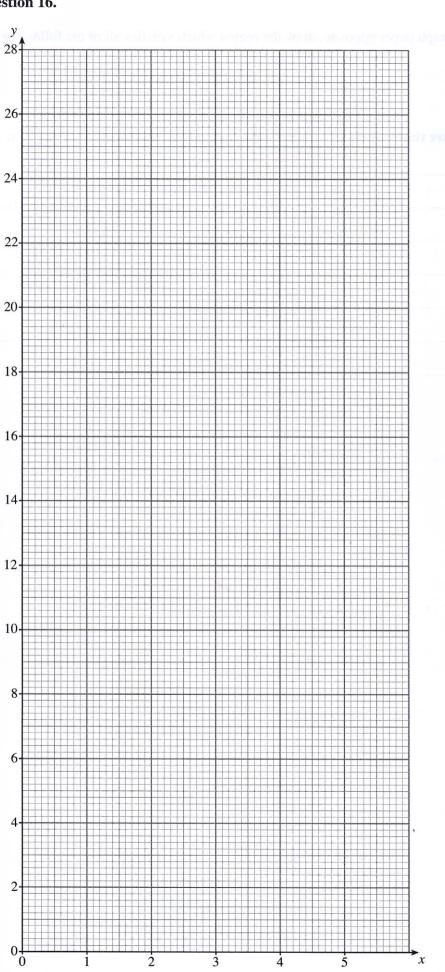
- Draw the line y = 11 on your graph paper and write down the x-values of the points where your two graphs intersect.

[1]

[3]


2. The table shows some of the values of $y = 2x^2 - 5x - 3$ for values of x from	n -2 to	04
---	---------	----

(a) Complete the table by finding the value of y for x = -1.


>011 (x 1 ≥ 1 > 0e	-2	>(-1	0	111	2	3	4
$y = 2x^2 - 5x - 3$	15		-3	-6	-5	0	9

	graph paper before, wasw.a.froquency polygoli to sager this cara.	ere arO
<u>2</u>		[1
(b)	On the graph paper opposite, draw the graph of $y = 2x^2 - 5x - 3$ for values of x and 4.	between -
		[3
(c)	Draw the line $y = 3$ on the graph paper and write down the x-values of the points two graphs intersect.	where you
		[2
(d)	Write down the equation in x whose solutions are the x -values you found in (c) .	

[1]

For use with Question 16.

- **16.** The table shows some of the values of $y = 3x + \frac{10}{x}$ for values of x from 1 to 5.
 - (a) Complete the table by finding the value of y when x = 1 and x = 2.

x	1	2	3	4	5
у	= 1	4	12.33	14.5	17

(b) On the graph paper opposite, draw the graph of $y = 3x + \frac{10}{x}$ for values of x between 1 and 5. [1]

(c) Find the coordinates of the point of intersection of $y = 3x + \frac{10}{x}$ and y = 27 - 4x which lies between x = 1 and x = 5.

[1]

15.	The graph of $y = x^2 - x - x$	5 has been drawn of	on the graph	paper opposite.
-----	--------------------------------	---------------------	--------------	-----------------

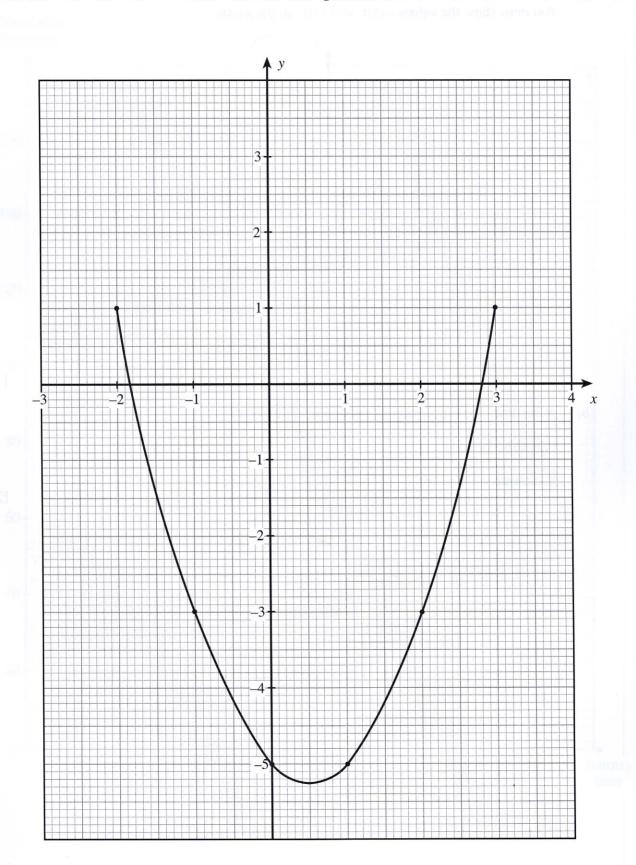
- (a) Use the graph of $y = x^2 x 5$ to estimate the gradient

On the same axes plot the graph of $y = -x^2$ for values of x from x = -2 to x = 2.

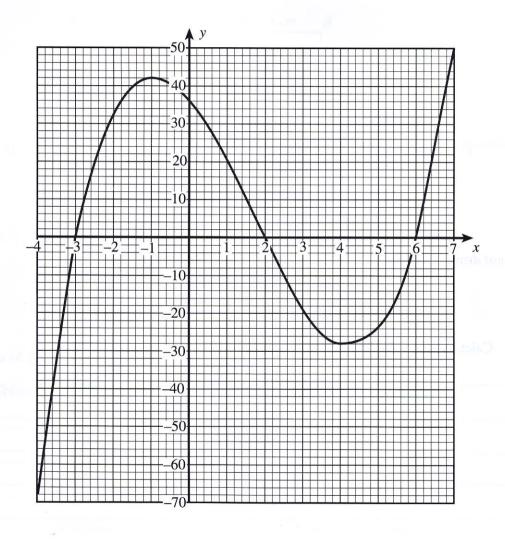
(c) Use the graphs of $y = x^2 - x - 5$ and $y = -x^2$ to solve $2x^2 - x - 5 = 0$.

at the point where x = 1.

(i) at the point where $x = \frac{1}{2}$,


[1]

[3]


[2]

[2]

For use with Question 15

16. The graph of $y = x^3 - 5x^2 - 12x + 36$, for values of x between x = -4 and x = 7, has been drawn below.

 (b) Using the graph, estimate the gradient of the curve y = x³ - 5x² - 12x + 36 when x = 5. (c) By drawing an appropriate line on the graph, solve the equation x³ - 5x² - 7x + 10 = 0. (d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x-axis and curve between x = -3 and x = 2. 	
(c) By drawing an appropriate line on the graph, solve the equation $x^3 - 5x^2 - 7x + 10 = 0$. (d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x-axis and	
(c) By drawing an appropriate line on the graph, solve the equation $x^3 - 5x^2 - 7x + 10 = 0$. (d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x-axis and	
(c) By drawing an appropriate line on the graph, solve the equation $x^3 - 5x^2 - 7x + 10 = 0$. (d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x-axis and	[1]
(d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x-axis and	
(d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x-axis and	
(d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x-axis and	[3]
(d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x -axis and curve between $x = -3$ and $x = 2$.	
(d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x -axis and curve between $x = -3$ and $x = 2$.	
(d) Use the trapezium rule with 5 strips to estimate the area enclosed by the x -axis and curve between $x = -3$ and $x = 2$.	
	[3] the
	[4]