

2 Write down the expression for the nth term for each of the sequences below.

a 11, 22, 33, 44, 55,...

 $n^{th}term =$

b 10, 13, 16, 19, 22,...

 $n^{th}term =$	
- adh_	

2.5 Finding the nth term for linear sequences

Each term of a sequence is numbered in order. We call an unknown term the *n*th term.

(1st	2nd	3rd	4th	 40th		nth
5,	9,	13,	17,	 161,	• • •	

The value of *n* shows which term to look at. For n = 40 look at the 40^{th} term in the sequence.

The coefficient of *n* in an *n*th term rule is given by the gap between the terms.

2.5 Finding the nth term for linear sequences

Each term of a sequence is numbered in order. We call an unknown term the *n*th term.

(1st	2nd	3rd	4th		40th	• • •	nth
5,	9,	13,	17,	• • •	161,	• • •	

The value of *n* shows which term to look at. For n = 40 look at the 40^{th} term in the sequence.

The coefficient of n in an nth term rule is given by the gap between the terms.

Ε

a 11, 22, 33, 44, 55,
+11 +11 +11 +11
$n^{th}term = 11n$
ь 10, 13, 16, 19, 22,
+3 +3 +3 +3 +3 3n = 3, 6, 9,
.7
+/
$3n + 7 = 10, 13, 16, \dots$
$n^{th} term = 3n + 7$
th
© Melearning

Each term of a sequence is numbered in order. We call an unknown term the n th term.

The value of *n* shows which term to look at. For n = 40 look at the 40^{th} term in the sequence.

A 2.5 Finding the nth term for linear sequences endilering 7 is the first term in the sequence below.

13,

15,

What is the value of n for the highlighted term?

11,

9,

7,

A 2.5 Finding the nth term for linear sequences \bigcirc modilearning 7 is the first term in the sequence below. 7, 9, 11, 13, 15, ...

What is the value of n for the highlighted term?

Answer:
$$n = 5$$

What is the value of n for the highlighted term?

What is the value of n for the highlighted term?

Answer:
$$n = 9$$

The diagram shows positions mapped to terms.

Write down the operation that maps positions to terms.

The diagram shows positions mapped to terms.

Write down the operation that maps positions to terms.

The diagram shows positions mapped to terms.

Fill in the box to show what n is mapped onto.

The diagram shows positions mapped to terms.

Fill in the box to show what n is mapped onto.

Answer:
$$n^{th}term = 3n$$

The diagram shows positions mapped to terms.

Write down the operation that maps positions to terms.

The diagram shows positions mapped to terms.

Write down the operation that maps positions to terms.

The diagram shows positions mapped to terms.

Fill in the box to show what n is mapped onto.

The diagram shows positions mapped to terms.

Fill in the box to show what n is mapped onto.

Answer:
$$n^{th}term = 4n$$

The coefficient of *n* in an *n*th term rule is given by the gap between terms.

The first diagram shows the sequence with equation $n^{th}term = 4n$.

$$n^{th}term = 4n$$

The first diagram shows the sequence with equation $n^{th}term = 4n$.

Fill in the box for the second diagram.

Answer: $n^{th}term = 4n + 1$

The first diagram shows the sequence with equation $n^{th}term = 5n$.

$$n^{th}term = 5n$$

The first diagram shows the sequence with equation $n^{th}term = 5n$.

Answer:
$$n^{th}term = 5n - 2$$

Look at the diagrams below.

$$n^{th}term =$$

Look at the diagrams below.

Fill in the box for the second diagram.

Answer: $n^{th}term = 2n+1$

Fill in the box for the sequence below.

$$n^{th}term =$$

Fill in the box for the sequence below.

$$n^{th}term = 2n + 3$$

Answer:
$$n^{th}term = 2n + 3$$

A 2.5 Finding the nth term for linear sequences © modilearning The terms of a sequence are highlighted below. n^{th} 5 6 7 8 9 10 11 12 13 14 3 4

Write the nth term rule in the box.

$$n^{th}term =$$

A 2.5 Finding the nth term for linear sequences (notilization)The terms of a sequence are highlighted below. n^{th} 2 3 4 5 6 7 8 9 10 11 12 13 14 3n+1

Write the nth term rule in the box.

$$n^{th}term = 3n+1$$

Answer: $n^{th}term = 3n + 1$

Write the nth term rule in the box.

$$n^{th}term =$$

Write the nth term rule in the box.

$$n^{th}term = 5n-2$$

Answer: $n^{th}term = 5n - 2$

$$n^{th}term =$$

Write the nth term rule for the sequence below.

$$n^{th}term = 3n+1$$

Answer: $n^{th}term = 3n + 1$

$$n^{th}term =$$

$$n^{th}term = 6n - 4$$

Answer:
$$n^{th}term = 6n - 4$$

$$n^{th}term =$$

Write the nth term rule for the sequence below.

$$n^{th}term = 4n + 4$$

Answer: $n^{th}term = 4n + 4$