Prime Numbers 3

Any number can be expressed as a product of primes.

For example the number 12 = 2x2x3

To express a number as a product of primes, try dividing it by 2 (the first prime) as many times as you can. Then try dividing it by the next prime (3) as many times as you can. Then try the next prime (5) as many times as you can and so on until you are left with 1.

eg Express 48 as a product of primes. eg Express 100 as a product of primes

2	48		2	100	
2	24		2	50	
2	12	So 48 = 2x2x2x2x3	5	25	So 100 = 2x2x5x5
2	6		5	5	
3	3			1	
	1				

Your teacher will show you some more examples.

Exercise.

Express each of the following as a product of prime factors.

1. 40	2. 58	3. 84	4. 95	5. 108	6. 312	7. 400
8. 600	9. 294	10. 1078	11. 1029	12. 1715	13. 3125	14. 550
15. 3185	16. 363	17. 384	18. 3375	19. 7875	20. 4096	

21. Try this one ... 4093 (but don't try too hard!)

What is special about the number 4093?

22.	Often $2^n - 1$ is prime.	
	For example, if n=2, $2^2 - 1 = 2 \times 2 - 1 = 3$	3 is prime
	if n=3, $2^3 - 1 = 2 \times 2 \times 2 - 1 = 7$	7 is prime
	if n=4, $2^4 - 1 = 2 \times 2 \times 2 \times 2 - 1 = 15$	15 not prime
	if n=5, $2^5 - 1 = 2 \times 2 \times 2 \times 2 \times 2 - 1 = 31$	31 is prime
	if n=6, $2^6 - 1 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 - 1 = 63$	63 is not prime
	if n=7, $2^7 - 1 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 - 1 = 127$	127 is prime
	if n=8, $2^8 - 1 = 2 \times 2 - 1 = 255$	255 is not prime

Often $2^n + 1$ is prime.

In the same way as above, test to see if it gives prime numbers for n=1, n=2, n=8.