GCSE Notes and Revision – Surds

See videos : http://www.waldomaths.com/video/Surds01/Surds01.jsp + +

Rules of surds

(1)	Multiplication	$\sqrt{a} \times \sqrt{b} = \sqrt{a}$	b , eg. $\sqrt{2} \times \sqrt{3} = \sqrt{6}$
(2)	Division	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} ,$	eg. $\frac{\sqrt{10}}{\sqrt{2}} = \sqrt{\frac{10}{2}} = \sqrt{5}$
(3)	Squaring and rooting	$(\sqrt{a})^2 = a ,$	eg. $\sqrt{7} \times \sqrt{7} = (\sqrt{7})^2 = 7$
		$\sqrt{a^2} = a$,	eg. $\sqrt{36} = \sqrt{6^2} = 6$

Simplifying surd expressions

(A) It is normal to make the number inside the square root sign as small as possible

<u>Example 1</u>: Simplify $\sqrt{12}$.

<u>Answer</u>: $\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2 \times \sqrt{3} = 2\sqrt{3}$ (In other words, factorise the number and take out any factors which are **square numbers** and square root them. The number left in the square root sign has no more square factors)

Example 2: Simplify $\sqrt{108}$.

<u>Answer:</u> $\sqrt{108} = \sqrt{9} \times \sqrt{12} = \sqrt{9} \times \sqrt{4} \times \sqrt{3} = 3 \times 2 \times \sqrt{3} = 6\sqrt{3}$

Questions 1Simplify: (a) $\sqrt{18}$ (b) $\sqrt{48}$ (c) $\sqrt{50}$ (d) $\sqrt{84}$ (e) $\sqrt{90}$ (f) $\sqrt{98}$ (g) $\sqrt{132}$ (h) $\sqrt{200}$ (i) $\sqrt{52}$

(B) You can simplify multiples to a single surd expression

Example 1:Simplify $\sqrt{2} \times \sqrt{3}$ Answer: $\sqrt{6}$ Example 2:Simplify $\sqrt{6} \times \sqrt{10}$ Answer: $\sqrt{6} \times \sqrt{10} = \sqrt{60} = \sqrt{4} \times \sqrt{15} = 2\sqrt{15}$ Example 3:Simplify $\sqrt{26} \times \sqrt{39}$ Answer: $\sqrt{2 \times 13 \times 3 \times 13} = \sqrt{6 \times 13^2} = 13\sqrt{6}$

<u>Questions 2</u>: Simplify: (a) $\sqrt{6} \times \sqrt{15}$ (b) $\sqrt{10} \times \sqrt{15}$ (c) $\sqrt{14} \times \sqrt{21}$

(C) You can add or subtract expressions if they are multiples of the same surd <u>Example 1</u>: $3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$ <u>Example 2</u>: $\sqrt{18} - \sqrt{8} = 3\sqrt{2} - 2\sqrt{2} = \sqrt{2}$ <u>Questions 3</u>: Simplify: (a) $\sqrt{40} + \sqrt{10}$ (b) $\sqrt{27} + \sqrt{12}$ (c) $\sqrt{24} - \sqrt{6}$ (d) $\sqrt{125} - \sqrt{75}$ (e) $\sqrt{44} + \sqrt{99}$

(D) It is usual to "rationalise the denominator". In other words, if there is a surd in the denominator of a fraction, simplify so that the only surds appear in the numerator.

Example 1: Simplify
$$\frac{2}{\sqrt{3}}$$
 Answer: $\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$ (notice that although the answer seems less simple, there are no surds in the denominator)

Example 2: Simplify
$$\frac{21}{\sqrt{14}}$$
 Answer: $\frac{21}{\sqrt{14}} \times \frac{\sqrt{14}}{\sqrt{14}} = \frac{21\sqrt{14}}{14} = \frac{3\sqrt{14}}{2}$

Copyright © R F Barrow 2005-2011

Questions 4: Simplify: (a)
$$\frac{10}{\sqrt{5}}$$
 (b) $\frac{\sqrt{5}}{\sqrt{3}}$ (c) $\frac{2\sqrt{3}+5}{\sqrt{3}}$
(d) $\frac{3\sqrt{6}}{\sqrt{3}}$ (e) $\frac{12\sqrt{21}}{\sqrt{6}}$ (f) $\frac{2\sqrt{15}}{\sqrt{12}}$ (g) $\frac{12\sqrt{3}-6\sqrt{2}}{\sqrt{6}}$

(E) Multiplying brackets with surd expressions. Initially you should treat the surd expression like an algebraic expression, and simplify after multiplying the brackets. Example 1: Simplify $(\sqrt{3} - 2\sqrt{2})(2\sqrt{3} - \sqrt{2})$

Example 1. Simplify
$$(\sqrt{3} - 2\sqrt{2})(2\sqrt{3} - \sqrt{2})$$

Answer: $2(\sqrt{3})^2 - 4\sqrt{2}\sqrt{3} - \sqrt{2}\sqrt{3} + 2(\sqrt{2})^2 = 10 - 5\sqrt{6}$
Example 2: Simplify $(\sqrt{5} - \sqrt{3})^2$
Answer: $(\sqrt{5} - \sqrt{3})(\sqrt{5} - \sqrt{3}) = (\sqrt{5})^2 - \sqrt{3}\sqrt{5} - \sqrt{3}\sqrt{5} - (\sqrt{3})^2$
 $= 8 - 2\sqrt{15}$
Example 3: Simplify $(3\sqrt{7} - 2\sqrt{5})(3\sqrt{7} + 2\sqrt{5})$
Answer: $(3\sqrt{7})^2 - 6\sqrt{35} + 6\sqrt{35} - (2\sqrt{5})^2 = 63 - 20 = 43$
Questions 5: Expand brackets and simplify (a) $(\sqrt{5} - 2)(2\sqrt{5} - 1)$
(b) $(3\sqrt{5} - \sqrt{7})^2$ (c) $(2\sqrt{11} - 3\sqrt{6})(2\sqrt{11} + 3\sqrt{6})$

General Questions 6:

- (a) Show that $x = 1 + \sqrt{5}$ is a solution of the quadratic equation $x^2 2x 4 = 0$.
- (b) A right-angled triangle has the two shorter sides $\sqrt{3}-1$ and $\sqrt{3}+1$. Show that the hypotenuse has length $2\sqrt{2}$.
- (c) A rectangle has two sides $\sqrt{7} 1$ and $x\sqrt{7} + 2$. Its area is 14 square units. Show that x = 2.
- (d) Show that the positive square root of $(7+4\sqrt{3})$ is $(\sqrt{3}+2)$.

ANSWERS:

1	(a)	3√2 (b)	4√3	(c)	5√2	(d)	2√21
	(e)	$3\sqrt{10}$ (f)	$7\sqrt{2}$	(g)	$2\sqrt{33}$	(h)	$2\sqrt{13}$
2	(a)	3√10 (b)	$5\sqrt{6}$	(c)	$7\sqrt{6}$		
3	(a)	3√10 (b)	$5\sqrt{3}$	(c)	$\sqrt{6}$	(d)	$5(\sqrt{5}-\sqrt{3})$
	(e)	$5\sqrt{11}$					
4	(a)	2√5 (b)	$\frac{\sqrt{15}}{3}$	(c)	$\frac{(2\sqrt{3}-\sqrt{3})}{\sqrt{3}}$	$\frac{(+5)\sqrt{3}}{\sqrt{3}} =$	$=\frac{6+5\sqrt{3}}{3}or2+\frac{5\sqrt{3}}{3}$
	(d)	$3\sqrt{2}$ (e)	6√14	(f)	$\sqrt{5}$	(g)	$6\sqrt{2} - 2\sqrt{3}$
5.	(a)	$8 - 5\sqrt{5}$	(b)	52-6	√ 35	(c)	-10