
**1** The following numbers have been rounded to a certain degree. Give their least and greatest values.

| (i)    | 150   | nearest 10        | Least = | Greatest = |
|--------|-------|-------------------|---------|------------|
| (ii)   | 30    | nearest 10        | Least = | Greatest = |
| (iii)  | 200   | nearest 100       | Least = | Greatest = |
| (iv)   | 12    | nearest whole no. | Least = | Greatest = |
| (v)    | 3.8   | 1 decimal place   | Least = | Greatest = |
| (vi)   | 3000  | nearest 1000      | Least = | Greatest = |
| (vii)  | 0.84  | 2 decimal places  | Least = | Greatest = |
| (viii) | 6     | nearest whole no. | Least = | Greatest = |
| (ix)   | 0.2   | 1 decimal place   | Least = | Greatest = |
| (x)    | 3.246 | 3 decimal places  | Least = | Greatest = |

## Problems

2

- (i) The length of a school hall correct to the nearest metre is 27m. Write down the least and the greatest values of the length of the hall.
  - (ii) Square carpet tiles have a length of 38 cm correct to the nearest cm. Write down the least and greatest possible values for the length of the sides.
  - (iii) One row of the tiles is laid side by side along the length of the hall. Neglecting any gaps between the tiles, show that 69 tiles is the **least** possible number of tiles needed to do this.
- **3** A rectangular card measures 128 mm long and 73 mm wide, each measurement being made correct to the nearest mm.
  - (i) Write down the least and greatest possible values for the length and the width of the card.
  - (ii) Two of the cards are placed as shown in the diagram. What is the **least** possible value of the distance AB?

